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With the proliferation of “omics” technologies, per-
sonalized medicine—which tailors treatment to an in-
dividual’s genomic profile—promised a revolution in
care. That revolution, says applied mathematician
Donald Geman, has been slow to arrive. Geman has
spent nearly four decades devising statistical methods
for a variety of applications. He recently teamed up
with an interdisciplinary group of scientists at The

Johns Hopkins University, where he is a professor
of applied mathematics and holds appointments
at the university’s Institute for Computational Med-
icine and Center for Imaging Science. Geman
helped engineer an algorithm that reduces data
complexity and may assist in differentiating be-
tween certain forms of cancer. This work builds on
his earlier research in computer vision, leveraging
his experience with pattern-recognition problems.
PNAS recently spoke to Geman, who was elected to
the National Academy of Sciences in 2015, about his
current research.

PNAS: We have been hearing about personalized
medicine for at least a decade. What are some of the
challenges researchers face?

Geman: Personalized medicine hasn’t yet reached a
point where it is deployable on a mass scale, and there
are many reasons for this. Genomic data are incredibly
complex due to the interactions among gene prod-
ucts, as well as heterogeneity both within and be-
tween patients. All of it contributes to the challenge
of moving personalized medicine forward.

Of course, when genome-wide omics data first
became available, there were, perhaps, some irrational
expectations about the level and timing of the impact
on healthcare. And, theremay also bemany omics data
tests that are currently working their way through the
long clinical trial pipeline. On the plus side, the discovery
of genetic variants has had a clinical impact, for example,
in the treatment of single-gene disorders, such as in
Huntington’s disease.

PNAS: The statistical analysis of omics data are one of
the keys to correctly interpreting the information
generated by these new disciplines. How does the
method described in your Inaugural Article (1) im-
prove upon existing ones?

Geman: The goal of this paper was to radically
simplify the data and shift the analysis from the
population level to individual profiles. The reason for
this shift is that we see an amazing amount of person-
to-person heterogeneity in cancer genomics data,Donald Geman. Image courtesy of Donald Geman.
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whether that’s variability in mutations, transcription lev-
els, or epigenetic states. Two patients, for example,
may have the same cancer phenotypically but different
types and levels of underlying cellular dysregulation.

To address these issues, we came up with the idea
of generalizing divergence from baseline. It’s the
same concept as when you get a blood test: there’s
a range of normal for individual factors, and anything
outside that range is considered abnormal. In cancer
genomics, we can do the same by assigning a baseline
range for gene expression or other variables. We de-
fine what’s “normal” for any part of an omics profile
and then binarize the data so that anything outside of
the baseline parameter is declared “divergent” or
“dysregulated.” This helps us identify the pattern of
dysregulation for each individual with a particular
cancer phenotype.

PNAS: How does simplifying the data help with
diagnosis?

Geman: Binarization allows us to more efficiently find
the particular molecular variables and interactions that
distinguish one cancer phenotype from another. In
effect, we have massively reduced the space of
potential biomarkers and prediction rules, which is
very liberating from a statistical perspective. More-
over, the reduction of complexitymightmake it feasible
to find predictors based on small subsets of mixed
omics variables that are related mechanistically: for
example, variables that cooperate in some aspect of
gene regulation.

PNAS: What attracted you to cancer genetics?

Geman: I came to this work after many years in image
analysis and computer vision, which I still think about.
But I was not personally motivated by the applications
for computer vision, like autonomous vehicles, auto-
mated manufacturing, and surveillance. On the other
hand, I was very drawn to the challenge of applying
statistics and machine learning to medicine. When I
started, I had no idea how much I’d have to recalibrate
and learn from conversations with people outside of my
domain, people at the medical school at [The Johns
Hopkins University], for example. But, there are links

between computational vision and genomic medicine
because both are pattern-recognition problems.

Maybe the biggest difference is the sample size.
Compared with disciplines in which machine learning
has been most successful, such as computer vision or
speech recognition, the number of labeled samples in
cancer genomics is extremely small. A small sample
size combined with a huge number of features
makes for a formidable technical challenge. In fact,
we believe that today’s tabula rasa learning, a method
of learning from scratch, is not well-suited to
understanding disease.

In computer vision, we use sequential adaptive
testing, a method similar to decision trees or the once
popular 20 questions game played by children. I have
always been amazed by the power of 20 questions, by
how fast we can nail something down if we ask the
right questions in the right order. It works very well in
practice, and the decision making is transparent,
which is another plus in cancer genomics or any
computational biology field. We give an example of
a decision tree for discriminating between two cancer
subtypes in the Inaugural Article (1).

PNAS: As a mathematician who has explored a variety
of problems in your career, what have you experi-
enced working across disciplines?

Geman: It is hard! In general, data scientists do not
adapt their strategies to the specific learning scenarios
they encounter in other areas, including molecular
medicine. They come with a set of tools and often
have only a secondary interest in the applications;
relatively few know or care about the underlying
mechanisms. Conversely, biologists and physicians
are handicapped because they’re unfamiliar or even
mystified by the mathematical methodology: the data
science and statistics.

I don’t think it’s possible to move forward without
working in a group where each discipline keeps the
other’s feet on the ground. Our group brings together
people from across disciplines: oncologists, molecular
biologists, computer scientists, statisticians, and math-
ematicians. I find that it’s the only way to make any
progress and to make sure that we’re working on
real problems.

1 Dinalankara W, et al. (2018) Digitizing omics profiles by divergence from a baseline. Proc Natl Acad Sci USA 115:4545–4552.
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